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ABSTRACT

In this paper, salt−fingers (also called thermohaline convection) and semi-convection are treated under the name of
double−diffusion (DD). We present and discuss the solutions of the RSM (Reynolds stress models) equations that provide the momen-
tum, heat, μ fluxes, and their corresponding diffusivities denoted by Km,h,μ. Such fluxes are given by a set of linear, algebraic equations
that depend on the following variables: mean velocity gradient (differential rotation), temperature gradients (for both stable and un-
stable regimes), and μ-gradients (DD). Some key results are as follows. Salt−fingers. When shear is strong and DD is inefficient, heat
and μ diffusivities are identical. Second, when shear is weak Kμ > Kh and the difference can be sizeable O(10) meaning that heat
and μ diffusivities must therefore be treated as different. Third, for strong-to-moderate shears and for Rμ less than 0.8, both heat and μ
diffusivities are practically independent of Rμ. Fourth, the latter result favors parameterizations of the type Kh,μ ∼ CR0

μ suggested
by some authors. Our results, however, show that C is not a constant but a linear function of the Reynolds number Re = ε(νN2)−1

defined in terms of the kinematic viscosity ν, the Brunt-Väisälä frequency N, and the rate of energy input into the system, ε. Fifth, we
suggest that ε is an essential ingredient that has been missing in all diffusivity models, but which ought to be present because without
a source of energy, turbulence dies out and so does the turbulent mixing (for example, the turbulent kinetic energy is proportional to
the power 2/3 of ε). Moreover, since different stellar environments have different ε, its presence is necessary for differentiating mixing
regimes in different stars. Semi−convection. In this case the destabilizing effect is the T -gradient, and when shear is weak, Kh > Kμ.
Since the model is symmetric under the change Rμ to R−1

μ , most of the results obtained in the previous case can be translated to this
case.
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1. Introduction

Double-diffusion (DD) processes (e.g., semi-convection and salt
fingers) are import mixing mechanisms, for example, in low-
mass red giants (e.g., Eggleton et al. 2006; Charbonnel & Zahn
2007; Denissenkov & Pinsonneault 2008; Cantiello & Langer
2008; Cantiello 2010; Denissenkov 2010). For lack of better
models, these processes have thus far been quantified with ei-
ther empirical relations or results from linear stability analysis,
or both. The first methodology has obvious limitations, while the
second faces the following problems.

First, linear analyses cannot fix amplitudes, and that explains
why most of the results are presented as “ratios” in which ampli-
tudes cancel out, for example, the heat-to-salt flux ratio in the
ocean. A satisfactory comparison of such ratio vs. laboratory
data (as in the salt-fingers case) is a welcome feature but is no
assurance that each individual flux is reliable; and yet, what is
required in the astrophysical case are the individual fluxes them-
selves. Second, though based on the results of dynamic equa-
tions, results of linear analysis run the risk of overestimating
the efficiency of the DD processes. In stars, DD processes do
not occur as they do in laboratory conditions chosen to high-
light the DD processes alone where there is no shear. Stellar
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environments contain shear, which is known to disrupt salt fin-
gers.

Third, none of the DD models based on linear stability anal-
ysis (or 2D simulations, Denissenkov 2010) has included shear;
this amounts to assuming that the effect of shear is negligible
or that the Richardson number is large. However, since when
Ri < 1 (strong shear), DD processes are considerably weakened,
assuming that shear is unimportant is risky at best.

However, we suggest that the most conspicuous shortcoming
of all the models proposed thus far is the absence of a physically
key ingredient, the energy required to sustain any type of turbu-
lent motion. The conceptual underpinning of all models begins
with the search for an instability that occurs when Re ≈ Re(cr),
where Re is the Reynolds number, a process that is ordinarily
carried out using linear stability analysis. The next step is to
realize that when the instabilities grow, and Re � Re(cr), the
treatment requires the inclusion of nonlinearities, a feature that
is outside the purview of linear models. Nonlinearities, while
difficult to treat, have an interesting property: their volume inte-
gral is zero, and so they do no generate or destroy energy: they
merely distribute whatever energy is available among the differ-
ent scales.

Since energy is only distributed but not consumed, the en-
ergy input into the system percolates unchanged all the way to
the smallest scales where irreversible processes such as kine-
matic viscosity and radiative losses degrade it into heat. That is
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why such the energy input equals the dissipation rate, usually
denoted by ε (cm2 s−3). Without such power, there would be no
turbulent motion or, equivalently, turning such power off would
lead to a decaying turbulence and ultimately to no mixing. The
well-known Kolmogorov law E(k) = Koε2/3 k−5/3, which gives
the kinetic eddy spectrum generated by the nonlinear interac-
tions, contains ε, which varies from system to system, while the
k-dependence of the spectrum has a universal character. Thus,
since ε is not and cannot be a universal value and different stellar
interiors have different power sources, its presence would ensure
that different stellar interiors are characterized by different inten-
sities of mixing. Diffusivity models that do not contain ε lack, in
our opinion, a key physical ingredient.

Since the combination (N is the Brunt-Väisälä frequency1),
ε

N2
(1a)

has the dimensions of a diffusivity, and the ratio of (1a) to the
kinematic viscosity ν is the Reynolds number

Re =
ε

νN2
, (1b)

one might conclude that the diffusivities Kα (the subscript α
stands for momentum, heat, passive tracer, etc.) in units of the
radiative value χ (cm2 s−1) are given by the relation:

Kα
χ
=

(
ε

νN2

) (
ν

χ

)
= Re Pr, Pr =

ν

χ
(1c)

where Pr is the Prandtl number, which may be as small as 10−7

in stellar interiors. A concrete example may help. Consider a
fully convective, unstably stratified regime N2 < 0, in which
nearly the entire outward flux is carried by convective motion.
In a steady state, where production balances dissipation, we have
for the Rμ = 0 case

Fc = gαw′T ′, gαTw′T ′ = ε, w′T ′ = Khβ (1d)

and thus

Kh =
ε∣∣∣N2

∣∣∣ (1e)

which shows that (1a) is the physically correct combination to
express the diffusivity2.

On the other hand, while convection leading to (1e) is an
extremely efficient limiting case without competing effects, in
regimes with N2 > 0 (stable stratification) mixing may come
from: a) shear; b) differential rotation; c) μ-gradients while T-
gradients work against it (salt fingers); and d) T -gradients while
μ-gradients work against it (semi-convection). In such circum-
stances, one must account for competing effects, which means
that there must be a “mixing efficiency”, usually denoted by Γ,
with generalizes (1e) to

Kα = Γα
ε

N2
(1f)

1 We recall the relations N2 = −gρ−1
0 ∂ρ/∂z = −gH−1

p (∇ − ∇ad)(1 −
Rμ), Rμ = ∇μ(∇ − ∇ad)−1, αμμ,z = −H−1

p ∇μ,∇μ ≡ ∂ ln μ/∂lnP,

αT [−T ,z + (T ,z)ad] = H−1
p (∇ − ∇ad), β = − ∂T

∂z + ( ∂T
∂z )ad, αT,μ =

−(∂ ln ρ/∂T )p,μ, (∂ ln ρ/∂μ)p,T .
2 We recall that L/M|sun = O(1) cm2 s−3 ∼ 10−4 W/kg, L|sun ∼
1026 W(W =Watts); in the convective zone, the mixing length theory
gives ε(CZ) : 
2N3 : α2

pH1/2
p g

3/2(∇ − ∇ad)3/2 where 
 = αpHp. In
the middle of the solar CZ, ε ≈ 35 cm2 s−3 (solar code courtesy of
Mazzitelli). Below the CZ, the internal gravity waves give ε(IGW) :
10−3 cm2 s−3 (Kumar et al. 1999).

and thus

Kα
χ
= Γα

(
ε

νN2

) (
ν

χ

)
= ΓαRe Pr . (1g)

As we shall prove below, the RSM (Reynolds stress models) not
only give rise to exactly expression (1f), which we arrived at
above using heuristic arguments, but it further provides the full
form of the dimensionless functions Γ

Γα(Ri,Rμ, Pe,M). (1h)

Here, Ri is the Richardson number (measuring the competing
effect on the mixing generated by shear and the opposite effect
due to stable stratification), Rμ is the density ratio (which mea-
sures the DD processes), Pe is the Peclet number defined in (5b),
which measures the effect of radiative losses and M represents
meridional currents.

Using the general expression (1g), in Sect. 5.1), we show
how all previous models have essentially guessed the form of
the function (1h) by neglecting all dependences except the one
on Rμ, see for example, Eqs. (15d, e). At the same time, they
took the Re Pr dependence to be a constant C, an assumption that
cannot be valid since, as just discussed, this is a key variable that
depends on the particular star one is considering. Relations (1g),
(1h) resulting from the RSM model are shown in Figs. 1–3.

The Ri dependence in (1h) requires comments. First, its def-
inition is

Ri =
N2

Σ2
, Σ = (2S i jS i j)1/2, S i j =

1
2

(ui, j + u j,i),

ui, j = ∂ui/∂x j (1i)

where ui represents the mean flow velocity and S ij the shear.
Stable and/or unstable regimes are characterized by the relations

Stable regime: N2 > 0,Ri > 0

Unstable regime: N2 < 0,Ri < 0. (1j)

The first regime corresponds to a density profile that decreases
with height, while the second regime corresponds to one in
which the density profile increases with height as in thermal con-
vection. Next, consider the conditions for semi-convection and
salt-finger regimes.

Semi-convection: ∇ − ∇ad > 0, ∇μ > 0, Rμ > 0

Ledoux stable,N2 > 0: ∇μ > ∇ − ∇ad, Rμ > 1 , Ri > 0

Ledoux unstable,N2 < 0 ∇ − ∇ad > ∇μ, Rμ < 1 , Ri < 0 (1k)

Salt fingers: ∇ad − ∇ > 0, ∇μ < 0, Rμ > 0

Ledoux stable,N2 > 0 ∇ad − ∇ >
∣∣∣∇μ∣∣∣ , Rμ < 1 Ri > 0

Ledoux unstable,N2 < 0
∣∣∣∇μ∣∣∣ > ∇ad − ∇, Rμ > 1, Ri < 0. (1l)

Oceanic salt fingers correspond to warm-salty over cold-fresh
water, a regime in which the z-gradients of T and S are posi-
tive. Though the T -gradient is stable and the S -gradient unsta-
ble, the overall N2 is positive, corresponding to a stably strat-
ified regime. The Mediterranean Sea is a known example of
such a regime. A semi-convection regime, which in oceanogra-
phy is called diffusive-convection, corresponds to cold-fresh over
warm-salty water. Both T − S gradients are negative, but N2 is
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positive corresponding to a stably stratified regime. A typical ex-
ample is water under ice.

In what follows, we present the algebraic 3D solutions of
the RSM that provide the ingredients needed to construct Γh,μ.
In Sect. 3.6, we work out a physical representation of Γh,μ that
exhibits the shear and DD contributions in a fairly transparent
way.

2. Stresses and fluxes

For completeness, we summarize the relevant equations that we
have derived in Paper I and that correspond to the local, station-
ary case.
Reynolds stresses:

bi j = Ri j − 2K
3
δi j :

bi j = − 8
75
τKS i j − 1

10
τZi j +

1
10
τBi j. (2a)

Vorticity tensor:

Zi j = bikV jk + b jkVik. (2b)

Buoyancy tensor:

Bi j = g

(
λiJ
ρ
j + λ jJ

ρ
i −

2
3
δi jλk Jρk

)
. (2c)

Buoyancy-density flux:

Jρi = −ρ−1ρ′u′i = g
−1b′u′i = αT Jh

i − αμJμi (2d)

λi ≡ −(gρ)−1 ∂p
∂xi
, τ =

2K
ε
, b = −gρ−1ρ. (2e)

It is easy to check that all the above tensors are traceless.
Heat fluxes: ρJh

i = ρu
′
iT
′

(δi j + ηi j)Jh
j = γi jβ j

γi j = π4τ(Ri j − π2gαμτλiJ
μ
j )

ηi j = π4τ[S i j + Vi j − gτλi(π5αTβ j + π2αμμ, j)].
(3)

μ-fluxes: ρJμi = ρu
′
iμ
′:

(δi j + ξi j)Jμj = −di jμ, j

di j = π1τ(Ri j + π2gαTτλi J
h
j )

ξi j = π1τ[S i j + Vi j − gτλi(π2αTβ j + π3αμμ, j)] (4a)

where:

βi = − ∂T
∂xi
− λigc

−1
p · (4b)

Dissipation-relaxation times scales:

π1 = π
0
1

(
1 +

RiRμ
a + Rμ

)−1

, π4 = π
0
4 f (Pe)

(
1 +

Ri
1 + aRμ

)−1

π2 = π
0
2(1 + Ri)−1[1 + 2RiRμ(1 + R2

μ)
−1], π5 = π

0
5g(Pe),

π0
1 = π

0
4 = (27 Ko3/5)−1/2(1 + σ−1

t )−1,

π0
2 = 1/3, π3 = π

0
3 = π

0
5 = σt

f (Pe) = bPe(1 + bPe)−1, g(Pe) = cPe(1 + cPe)−1,

a = 10,Ko = 5/3, 4π2b = 5(1 + σ−1
t ), 7π2c = 4σ−1

t . (5a)

Here, Pe is the Peclet number representing radiative losses,

Pe =
4π2

125
K2

εχ
, (5b)

where χ (cm2 s−1) = Kr(cpρ)−1 is the thermometric conductivity,
Kr = 4acT 3(3ρκ)−1 is the radiative diffusivity, and κ is the opac-
ity. In the previous relations, K, ε, and τ are the eddy kinetic en-
ergy, its rate of dissipation, and the dynamical time scale, which
are related to one another as follows

τ =
2K
ε
· (5c)

3. The 1D case. Solutions of Eqs. (2–4)

Since Eqs. (3–5) are algebraic relations, in the 1D case the solu-
tions representing the heat, concentration and momentum fluxes
have a particularly simple form:

w′T ′ = Khβ, w′μ′ = −Kμ
∂μ

∂z
,

wu = −Km
∂u
∂z

(6a)

where Kh,μ,m are the T , μ and momentum diffusivities The sim-
plest representation that that emerges from solving the rms equa-
tions is (see Eq. C.1 of Paper I)

Kα = τw2Aα, (6b)

where w2 is twice the vertical component of the eddy kinetic
energy and the Aα are dimensionless functions discussed below.
Using the representation (1f), we find

Γα =
1
2

(τN)2S α, S α = Aα
w2

K
(6c)

where the functions Aα and w2 are given next. In Sect. 3.6, we
work out a representation of Γh,μ that exhibits the shear and
DD contributions in a transparent way.

3.1. Dimensionless structure functions Aα

The solution of the RSM yields the following results:

Ah = π4[1 + px + π2π4x(1 − r−1)]−1,

Aμ = Ah(rRμ)−1, Am =
Am1

Am2
, (6d)

where

Am1 =
4
5
−

[
π4 − π1 +

(
π1 − 1

150

)
(1 − r−1)

]
xAh,

Am2 = 10 + (π4 − π1Rρ)x +
1

50
(τΣ)2. (6e)

The solution of the Reynolds Stresses yields the following result
General case:

w2

2K
=

1
3

[
1 +

2
15

Aρ(τN)2 +
1

10
Am(τΣ)2

]−1

(6f)

P = ε (6g)

w2

2K
=

[
30
7
+ Aρ(τN)2

]−1

, (6h)
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where we have defined the following dimensionless functions:

x ≡ (τNh)2 = −τ2gH−1
p (∇ − ∇ad) = (τN)2(1 − Rμ)−1 (7a)

r =
heat flux
μ − flux

=
αTw′T ′

αμw′μ′
=

1
Rμ

Kh

Kμ
(7b)

Aρ =
Ah − RμAμ

1 − Rμ
· (7c)

The model results are as follows:

r =
1

Rμ

π4

π1

1 + qx
1 + px

(7d)

q = π1π2(1 + Rμ) − π1π3 Rμ, p = π4π5 − π2π4(1 + Rμ). (7e)

3.2. The variable (τ N)2. Nonlocal model

As discussed in Paper I, Sect. 6, since the dynamical time scale
defined in (5c) depends on the kinetic energy and on its rate of
dissipation, one must solve two dynamic equations for K and ε

DK
Dt
+
∂Fke

i

∂xi
= Ps + Pb − ε (8a)

2K
ε

Dε
Dt
=

1
2

∂Fke
i

∂xi
+ c1Pb + c3Ps − c2ε, (8b)

where using (6a), the production due to shear and buoyancy are
given by

Ps = −(u′w′uz + v′w′vz) = KmΣ
2 > 0 (8c)

Pb = gλiJ
ρ
i = gλi(αT Jh

i − αμJμi ) = −KρN
2, (8d)

where the density diffusivity is defined as

Kρ = Kh
1 − r−1

1 − Rμ
· (8e)

When the heat and concentration diffusivities are the same,
Eq. (7b) gives r → R−1

μ and (8e) yields Kρ = Kh = Kμ, as
expected. The flux of eddy kinetic energy Fke

i was commented
upon in Sect. 6 of Paper I and will be discussed again in Paper V.

3.3. The variable (τ N)2. Local model P = ε

If instead of solving the nonlocal model (8a, b), with the dif-
fusion terms represented by the fluxes of K and ε, we assume
a local model where production is equal dissipation, the model
simplifies considerably. While the Ah,μ remain the same, the ex-
pression for Am simplifies to

Am =
2

(τΣ)2

[
15
7
+ Aρ(τN)2

]
. (9a)

In the local limit, Eq. (8a) becomes

Ps + Pb = ε, KmΣ
2 − KρN

2 = ε. (9b)

Using the notation first introduced by Mellor & Yamada (1982)

Gm ≡ (τΣ)2, (9c)

Equation (9b) becomes, after a great deal of algebra, the follow-
ing equation for Gm in terms of Ri , Rρ, and Pe

c3G3
m + c2G2

m + c1Gm + 1 = 0 (9d)

c3 = A1Ri3 + A2Ri2,

c2 = A3Ri2 + A4Ri,

c1 = A5Ri + A6 (9e)

where the functions Ak are given in Appendix A, Eq. (A.3).

3.4. Dissipation rate, Reynolds number

As already noted, the advantage of the representation (1f,g) is
that it highlights the role of the power available to generate a
mixing state, the degree of stratification N2 and the role of χ.
Clearly, different physical environments have quite different Re
because the power to generate mixing can be of quite different
nature. In addition to the example of convection in Eqs. (1d–e),
we can consider the region below the CZ, where an estimate of ε
was presented by Kumar et al. (1999) and which represents the
power of internal gravity waves. Their results is

ε = 10−3 cm2 s−3. (10a)

If we employ typical values N2 = 10−7 s−2 and χ = 109 cm2 s−1

from the second and third relations in (1g), we obtain

Re Pr = 10−5, (10b)

which is one of the values we considered in presenting the results
of our model in Figs. 1–4. To gain an appreciation of what (10b)
implies, consider a realistic Prandtl number of Pr = ν/χ = 10−7.
The Reynolds number then becomes

Re ≈ 100. (10c)

The value (10c) shows that, below the CZ, turbulence is only
moderately strong, as one indeed expects from general consider-
ations. However, since our model is valid in general, we present
the results for different Re since different stellar environments
have different values of ε than in (10a).

Instead of Re could we have labeled the figures with Pe?
The answer is negative since Pe is not an outside variable, such
as N2, χ, ε but an internal dynamical variable that depends on
the turbulent kinetic energy and as such, it is determined inter-
nally as part of the solution of the problem. Pe is therefore an
output, not an input, which implies that it cannot be assumed
to be a fixed value since it is a dynamical variable. That makes
the comparison with numerical simulations difficult since they
treat Pe as fixed. For example, Fig. 14 of Brummel et al. (2002)
shows that, unless Pe is very large, the resulting “overshooting
measure” would exceed the helio-seismic data of ∼0.1 Hp (cited
in the Discussion section of the above reference) by an order of
magnitude. Specifically, in order to bring their OV extent into
the range of the helio data, Brummel et al. (2002) had to invoke
a value of Pe about 100 times larger than what they used, that
is, a value of Pe ∼ 104. Such a value is predicted by the present
model as one can see from Figs. 1–3 but, as before, other condi-
tions must be satisfied, namely,

Pe ∼ 104 : Re Pr ≈ 103, (10d)

which is quite restrictive since it seems to exclude the bot-
tom of the convective zone and the underlying shear dominated
tachocline.

3.5. Peclet number dependence

The determination of Pe that enters the time scales Eq. (5a) be-
gins with the definition (5b), which we rewrite as

Pe =
π2

125
Ri Re PrGm (10e)

and which shows that Pe is not a fixed number but a dynamical
variable that depends on Ri, Re, Rμ; that is,

Pe = Pe(Ri,Re,Rμ) (10f)
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corresponding to arbitrary T and μ-gradients, arbitrary shear, and
Reynolds number. Relation (10f) naturally complicates the solu-
tion of Eq. (9d) since the coefficients A1,...6 in (9e) depend on
the πk which in turn depend on Pe, which itself depends on the
unknown function Gm. For large values of Pe corresponding to
negligible radiative losses, the πk are practically independent of
Pe, and the solution of Eq. (9d) is simplified. It is only when ra-
diative losses are important and Pe is small that the solution of
Eq. (9d) becomes more involved and requires an iterative pro-
cess.

In conclusion, the diffusivities of heat, μ, and momentum
measured in units of χ, are given by Eqs. (1f, g) and (6c). Since
the amount of energy needed to generate the turbulent state is an
outside parameter, it is physically correct to consider the variable
RePr as an external parameter, and for this reason in Figs. 1–3,
we present the results for different values of such variable, that
is, the diffusivities are functions of

Kα = Kα(Ri,Rμ, RePr). (10g)

The Richardson number Ri represents the competition between
stable stratification (a sink of mixing) and shear (a source of mix-
ing), Rμ represents DD processes and Re represents the amount
of energy dissipated. The nonexistence of a critical Richardson
number was discussed in Paper I and in Canuto et al. (2008a).

3.6. Alternative representation of Γh,μ

Though relations (1g) and (6c) are the basic relations for com-
puting the various diffusivities, it is instructive to present an ex-
pression for Γh,μ that exhibits the shear and DD contributions in
a transparent way. Let us begin by taking the rhs of (8a) as zero
which corresponds to the local model production = dissipation.
Use of relations (8c, d) in the Ps + Pb = ε relation leads to

ε = KρN
2 1 − R f

R f
, (10h)

where the flux Richardson number is defined as

R f = Ri
Kρ
Km
· (10i)

Next, using Eq. (8e), we obtain the desired expression for Γh =
KhN2

ε
which is

Γh(Ri,Rμ) =
R f

1 − R f︸��︷︷��︸
shear

1 − Rμ
1 − r−1︸��︷︷��︸

DD

, (10j)

which exhibits the dependence on shear (Ri) and DD (Rμ).
Consider some limiting cases. In the presence of strong shear,
heat and μ, diffusivities become equal, and from (7b) we have
r → R−1

μ . Relation (10j) then becomes the well-known expres-
sion
Strong shear (No DD):

Γh =
R f

1 − R f
, R f = Ri

Kh

Km
=

Ri
σt(Ri)

(10k)

where the turbulent Prandtl number σt(Ri) is known to be an
increasing function of Ri as Fig. 1f shows. Conversely, in the
absence of shear, R f → ∞, relation (10j) becomes
No shear (DD):

Γh = − 1 − Rμ
1 − r−1

> 0. (10l)

In the salt fingers case, one has Rμ < 1, r < 1 which yields a
positive Γh. In the semi-convective regime, Rμ > 1, r > 1 and
Γh > 0. Finally, the expression for Γμ is

Γμ =
Γh

rRμ
=

R f

1 − R f︸��︷︷��︸
shear

1 − Rμ
Rμ

1
r − 1︸���������︷︷���������︸

DD

> 0. (10m)

There is only one set of data from the North Atlantic Tracer
Release Experiment (NATRE, Ledwell et al. 1993, 1998) that
provide the function

Γh(Ri,Rμ) (10n)

in the presence of both DD (salt fingers) and shear. Such data
(St. Laurent & Schmitt 1999) were used to test relation (10j)
or, more specifically, the model used to evaluate the different
terms in it. The model presented in Sects. 3.1–3.3 was found to
reproduce such data well (Canuto et al. 2008b).

4. Ledoux vs. Schwarzschild criteria
for semi-convection

In the case of semi-convection, the Ledoux & Schwarzschild cri-
teria are often discussed as if they were antithetic, implying an
uncertainty in the choice of one of the two. To discuss the topic,
let us consider the case of no shear, and thus the second of (9b)
implies that

−KρN
2 > 0, Kρ =

Kh − KμRμ
1 − Rμ

· (11a, b)

If we consider the mass flux, we see that, using (2d) we find

w′ρ′ = −Kρ
∂ρ

∂z
= g−1ρ0KρN

2 < 0, (11c)

which corresponds to a downward mass flux. We distinguish sev-
eral regimes of interest:

Semi-convection, Ledoux stable, Rμ > 1,N2 > 0. From (11b)
we obtain

Kh

Kμ
(∇ − ∇ad) > ∇μ > ∇ − ∇ad, Kh > Kμ. (11d)

Dynamical stability (∇μ > ∇ − ∇ad) sets the lower limit of ∇μ
and does not depend on any characteristics of turbulent mixing,
while the latter sets the upper limit. The Schwarzschild instabil-
ity criterion ∇ − ∇ad > 0 corresponds to rewriting (11c) as

∇ − ∇ad >
∇μ

Kh/Kμ
= 0, Kh/Kμ → ∞. (11e)

However, the last relation is not satisfied in any known regime.
Semi-convection, Ledoux unstable, Rμ < 1,N2 < 0. In this

case we have

∇ − ∇ad >
Kμ
Kh
∇μ Kh < Kμ. (12a)

Salt-fingers, Ledoux stable, Rμ < 1,N2 > 0. In this case we have

Kh

Kμ
(∇ − ∇ad) < ∇μ < ∇ − ∇ad, Kh < Kμ. (12b)

Salt-fingers, Ledoux unstable, Rμ > 1,N2 < 0. In this case we
have

(∇ − ∇ad)
Kh

Kμ
< ∇μ, Kh > Kμ. (12c)
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Fig. 1. No doublediffusion, shear only. The heat, momentum, and μ mixing efficiencies, as defined in Eq. (1f), vs. Ri for different values of the
combination RePr which in the figures is denoted by Reχ. In Fig. 1d we plot the turbulent Prandtl number σt defined in Eq. (14) vs. Ri for different
Reχ. In Fig. 1e we plot the Peclet number vs. Ri. In Fig. 1f we plot the data corresponding to the case Pe � 1, which well reproduced well by
the present model, lower curve in panel 1e. The data are as follows: meteorological observations (Kondo et al. 1978, slanting black triangles;
Bertin et al. 1997, snow flakes), lab experiments (Strang & Fernando 2001, black circles; Rehmann & Koseff 2004, slanting crosses; Ohya 2001,
diamonds), LES (Zilitinkevich et al. 2007a,b, triangles), DNS (Stretch et al. 2001, five-pointed stars).
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V. M. Canuto: Double diffusion processes. II.

Thus, in summary, we have:

S emi−Convection S alt Fingers
N2 > 0 Kh > Kμ Kμ > Kh

N2 < 0 Kμ > Kh Kh > Kμ.
(12d)

5. Results

The formalism presented above shows that the diffusivities de-
pend on three parameters, namely,

Ri,Rμ,Re Pr . (13)

We have numerically solved the 1D model in the local limit P =
ε, Appendix C, and the results are shown in Figs. 2–3 where we
present the heat, momentum, and μ diffusivities in units of the
thermometric diffusivity, χ, defined after Eq. (5b), as a function
of Rμ for different values of RePr and Ri. We recall that salt
fingers and semi-convection are represented by Rμ < 1, Rμ > 1
respectively, see Eqs. (1k, l). For completeness, for the Rμ = 0
case, we also present the Peclet number Pe, Eqs. (5b, 10e), and
the turbulent Prandtl number:

σt(Ri, Pe) ≡ Km

Kh
· (14)

As expected, the ratio (14) is not constant but increases with Ri,
a feature that the model predicts since it is physically clear that
stable stratification affects temperature more than velocity, and
thus it lowers the heat diffusivity more than the momentum one,
yielding a σt that increases with Ri, as is indeed observed. For
the large Pe regime, the model reproduces the available data dis-
cussed in Canuto et al. (2008) and presented in Fig. 1f well. As
expected, the stronger the radiative losses, represented by small
values of RePr, the smaller the heat diffusivity, first panel in each
figure.

5.1. Results

No DD. In this case, all the mixing models used thus far in stel-
lar structure calculations (e.g., Mathis et al. 2004; Palacios et al.
2003, 2006; Charbonnel & Talon 2005, 2007) assume the exis-
tence of a finite Ri(cr) since their starting point is the relation

Ri < Ri(cr) (15a)

which ultimately gives

Pe � 1 :
Km,h

χ
= 2

Ri(cr)
Ri

=
1

3Ri
, (15b)

since Ri(cr) was taken to be 1/6 (Maeder & Meynet 2001). As
stated by the previous authors, relations (15a,b) are only valid in
the absence of “thermal leakage” that is, for Pe � 1. The first
remark is that the basis of this model, Eq. (15a), disagrees with
the data shown in Fig. 1f since there is no Ri(cr), see Canuto
et al. (2008a). Let us, however, assume for a moment that (15b)
was arrived at in a way that does not involve the existence of
Ri(cr); that is, consider it an heuristic relation and compare it
with the results of the model. From Figs. 1d, e, we observe that
the equality of momentum and heat diffusivities can be satisfied
only under the conditions

Km∼Kh : 10−2 � Ri∼10−1, Re Pr∼102−103, Pe ≈ 100. (15c)

The problem is not so much the validity of (15b), but rather how
legitimate it is to use (15b) in regimes of Ri, Pe, and RePr other
than those described in (15c).

Salt fingers (thermohaline convection). The relevance of this
process was recognized quite early (Stothers & Simon 1969),
but even today its modeling is still based on largely heuristic re-
lations, the first of which was proposed by Ulrich et al. (1972)
and used by several authors (Kippenhahn et al. 1980; Vauclair
2004, 2008; Eggleton et al. 2006; Charbonnel & Zahn 2007).
The Ulrich model for the ratio Kh/χ reads

Kh

χ
= CRμ,

Kμ
χ
= Cr−1, (15d)

where r is the ratio of heat-to-μ fluxes, see Eq. (7b). The value of
C has been a matter of debate: Cantiello & Langer (2008, 2010)
use C = 3, while Charbonnel & Zahn (2007) use C = 658. A
different relation,

Kμ
χ
= 2 × 10−2, (15e)

was used by Denissikov and Pinsonneault (2008) to reproduce
data for low-mass RGB stars. Relation (15d) with C = 3, 1000
are consistent with (15e) for Rμ � 10−2, 10−5 respectively, so
these models cannot be ruled out. However, due to a difference
of a factor of a thousand in their values of Rμ, the two models
must have different implications.

The results presented in Fig. 2 exhibit interesting features.
Since in this case, the destabilizing effect comes from the μ gra-
dient, in Fig. 2 we plot Kμ/χ for the following parameters

Ri = 0.1, 1, 10 Reχ ≡ Re Pr = 10−3, 10−1, 1. (15f)

a) For strong shear, e.g., Ri = 0.1, there is little difference be-
tween heat and μ diffusivities, as indeed expected;

b) when shear is weak, e.g., for Ri = 10, panel f) shows that the
μ diffusivity is larger than the heat diffusivity, as expected,
since in the salt-finger case, it is the μ field that causes the
instabilities. The ratio Kμ/Kh may be significant, as one can
observe in panel f). This implies that heat and μ diffusivities
cannot be taken to be the same;

c) in each case the dependence on RePr = Reχ of Eq. (1g) is
clearly seen.

d) in each of the panels on the rhs there is only one curve since
the variable Reχ ≡ Re Pr cancels out in the ratioKμ/Kh;

e) the broad insensitivity on the density parameter Rμ up to val-
ues of about 0.8, for the case of strong-moderate shear favors
models of the form (15e), but since such models have no Ri-
dependence, it is more consistent to compare them with the
results for small shear, large Ri of panel e);

f) contrary to (15e), the coefficient C is not a constant but a
linear function of RePr;

g) if we regard (15e) as an empirical input, panel e) shows that
it is reproduced by the RSM for Rμ � 1 and for

Re Pr =
ε

χN2
= 10−3. (15g)

Using Fig. 2 of Denissenkov & Pinsonneault (2008) which
yields Pr = O(10−6) and ν = O(102) cm2 s−1, one can then
deduce a value for ε.

Semi-convection. In this case the pertinent literature was re-
viewed in Sect. 1 of Canuto (1999), so there is no need to repeat
it here again. As discussed in the last reference, the models by
Langer et al. (1989) read as

Kμ
χ
=

1
6
αsc

1
Rμ − 1

, 8 × 10−3 < αsc < 5 × 10−2. (15h)
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Fig. 2. Salt fingers. The normalized diffusivities Kh,μ/χ vs. Rμ < 1, for different values of Ri and RePr ≡ Reχ. See relation (1g).

A77, page 8 of 11

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201014448&pdf_id=2


V. M. Canuto: Double diffusion processes. II.

Fig. 3. Semi convection. Same as Fig. 2 but for Rμ > 1. The dash-dotted curves represent the empirical relation (15h).
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Since in this case the destabilizing effect is the T -gradient, when
shear is weak-to-moderate, Kh > Kμ, as shown in Fig. 3. Most of
the conclusions of the salt-finger case can be repeated here since
the model is symmetric under the change Rμ to R−1

μ .
In conclusion, in both salt-finger and semi-convection

regimes, the present model yields a dependence of the ratio Kμ/χ
on the variables:

Ri,Rμ, Re Pr . (15i)

Heuristic mixing models such as (15d), (15e), and (15h) have
focused only on the Rμ dependence, while neglecting the depen-
dence on

Re Pr =
ε

χN2
(15j)

which they assume to be a constant, e.g., C and/or αsc/6 in the
previous relations, while in reality it is a key factor since it de-
termines the strength of the ratios Kh,μ/χ, and it varies from star
to star.

6. Conclusions

A welcome feature of the RSM is the relative simplicity of the
equations determining the Reynolds stresses, heat and μ fluxes.
The presence of two differential equations for K and ε is a com-
mon features of all turbulence models. When a local model is ap-
plicable, the present model is fully algebraic and yet the amount
of information these relations contain is quite substantial: stable
stratification, unstable stratification, rigid rotation, shear, and ra-
diative losses (Peclet number).

Appendix A: The functions Ak in relation (9e)

We begin with relations (9d, e), which we rewrite here:

c3G3
m + c2G2

m + c1Gm + 1 = 0 (A.1)

with

c3 = A1Ri3 + A2Ri2, c2 = A3Ri2 + A4Ri, c1 = A5Ri + A6. (A.2)

The coefficients Ak are given by the following algebraic expres-
sions:

150(1 − Rρ)3A1 = π1π4(π4 − π1Rρ){π2(15π3 + 7)(R2
ρ + 1)

+ [14(π2 − π3) − 15π2
3]Rρ}

9000(1 − Rρ)
2A2 = π1π4{π2(210π1 − 150π3 + 7)(R2

ρ + 1)

+ [14(π2 − π3)(1 + 15π1

+ 15π4) + 150π2
3]Rρ + 210π2(π4 − π1)}

150(1 − Rρ)
2A3 = π1[5π2π4(30π3 + 17)

+ π1(15π3 + 7)](R2
ρ + 1)

− (15π3 + 7)(π2
1 − π2

4)

− [10π1π3π4(15π3 + 17)

+ 15π2(π2
1 + π

2
4) + 14π1π4(1 − 10π2)]Rρ

9000(1 − Rρ)A4 = [150(π1π3 + π2π4)

− 7π1(1 + 30π1)]Rρ
− 150(π1π2 + π3π4)

+ 7π4(1 + 30π4)

30(1 − Rρ)A5 = [−30(π1π3

+ π2π4)

− 17π1]Rρ + 30(π1π2 + π3π4) + 17π4,

A6 = −1/60. (A.3)

Appendix B: 3D Mixing model

Reynolds stresses:

bi j = −2KmS i j − 1
10
τZi j +

1
10
τBi j. (B.1)

Momentum diffusivity and dynamical time scale:

Km =
8K2

75ε
, τ =

2K
ε
· (B.2)

Vorticity tensor:

Zi j = bikV jk + b jkVik. (B.3)

Buoyancy tensor:

Bi j = g

(
λiJ
ρ
j + λ j J

ρ
i −

2
3
δi jλk Jρk

)
. (B.4)

Buoyancy flux:

Jρi = αT Jh
i − αμJμi (B.5)

λi ≡ −(gρ)−1 ∂p
∂xi
· (B.6)

Shear and vorticity:

2S i j = ui, j + u j,i, 2Vi j = ui, j − u j,i. (B.7)

Heat fluxes: ρJh
i = ρu

′
iT
′

(δi j + ηi j)Jh
j = γi jβ j

γi j = π4τ(Ri j − π2gαμτλi J
μ
j )

ηi j = π4τ[S i j + Vi j − gτλi(π5αTβ j + π2αμμ, j)]. (B.8)

μ-fluxes: ρJμi = ρu
′
iμ
′:

(δi j + ξi j)Jμj = −di jμ, j

di j = π1τ(Ri j + π2gαTτλi J
h
j )

ξi j = π1τ[S i j + Vi j − gτλi(π2αTβ j + π3αμμ, j)] (B.9)

where

βi = − ∂T
∂xi
− λi
g

cp
· (B.10)

Appendix C: 1D Mixing model with P = ε

Heat, concentration and momentum diffusivities (subscript α):

Kα
χ
= ΓαRePr,

Re ≡ ε

νN2
, Pr =

ν

χ
, Γα =

1
2

GmRiS α. (C.1)

Dimensionless structure functions:

S α = Aα
w2

K
, Gm ≡ (τΣ)2 (C.2)

Ah = π4[1 + px + π2π4x(1 − r−1)]−1,

Aμ = Ah(rRμ)−1 (C.3)

Am =
2

(τΣ)2

[
15
7
+ Aρ(τN)2

]
(C.4)
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Heat to concentration flux ratio:

r =
1

Rμ

π4

π1

1 + qx
1 + px

(C.5)

q = π1π2(1 + Rμ) − π1π3Rμ, p = π4π5 − π2π4(1 + Rμ). (C.6)

Ratio of vertical to total kinetic energy:

1
2
w2

K
=

[
30
7
+ Aρ(τN)2

]−1

. (C.7)

Dimensionless dynamical time scale:

x ≡ (τN)2(1 − Rμ)
−1. (C.8)

Equation for Gm: see Eqs. (9d, e)
Flux Richardson number:

R f = Riσ−1
t (1 − r−1)(1 − Rμ)

−1. (C.9)

Density structure function:

S ρ = S h(1 − r−1)(1 − Rμ)−1. (C.10)

Turbulent Prandtl number:

σt =
Km

Kh
· (C.11)

Density ratio:

Rμ ≡
αμμ,z

αT [ ∂T∂z − ( ∂T∂z )ad]
=

∇μ
∇ − ∇ad

· (C.12)

Richardson number:

Ri =
N2

Σ2
· (C.13)

Brunt-Väisälä frequency:

N2 = −gH−1
p (∇ − ∇ad)(1 − Rμ). (C.14)

Mean shear:

Σ = (2S i jS i j)
1/2,

S i j =
1
2

(ui, j + uj,i), ui, j = ∂ui/∂x j. (C.15)

Dimensionless time scales:

π1 = π
0
1

⎛⎜⎜⎜⎜⎝1 + Ri
1 + 10 R−1

μ

⎞⎟⎟⎟⎟⎠
−1

,

π4 = π
0
4 f (Pe)

(
1 +

Ri
1 + 10 Rμ

)−1

(C.16)

π2 =
1
3

[
1
2

(Rμ + R−1
μ )

]−1

, π5 = π
0
5g(Pe),

π3 = π
0
3 = π

0
5 = σt, π0

1 = π
0
4 = 0.08,

f (Pe) =
bPe

1 + bPe
, g(Pe) =

cPe
1 + cPe

,

(4π2)b = 5(1 + σ−1
t ), (7π2)c = 4σ−1

t .

Peclet number:

Pe =
π2

125
Ri Re PrGm. (C.17)
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